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The Third-Difference Approach
to Modified Allan Variance

Charles A. GreenhallMember, IEEE

Abstract—This study gives strategies for estimating the mod- as f — 0, where 3> —5. In the usual nomenclature
ified_ Allan variance (MVAR), and formulas for _computing th_e of frequency and time, the noises associated with=
equivalent degrees of freedom (edf) of the estimators. A third- 0,—1,-2,—3,—4 are called white phase, flicker phase, white

difference formulation of MVAR leads to a tractable formula f flicker f d d Kk f
for edf in the presence of power-law phase noise. The effect of requency, flicker irequency, and random-walk irequency,

estimation stride on edf is shown. First-degree rational-function respectively. Nonintegral values @f are also allowed; the

approximations for edf are derived, and their errors tabulated. corresponding noises are called “fractional.”

A theorem allowing conservative estimates of edf in the presence A |og-log plot of measureds, (7) or mod o, (1) VS T,

of compound noise processes is given. the familiar -7 plot, often indicates phase noise that can be
Index Terms—Allan variance, clock noise, finite differences, modeled as a linear combination of uncorrelated power-law

frequency stability, power-law noise, time and frequency. components, the component associated Witieing identified

by a straight-line section with slopg (-3 — ). The main

advantage of MVAR over AVAR is the increased range of

. . over which this slope relationship holds:5 < 3 < —1 for
LLAN VARIANCE (AVAR) and modified Allan vari- AVAR, —5 < 3 <1 for MVAR [3]. In particular, a mods,(r)

ance (MVAR) are statistical measures of fractional freﬁlot can easily distinguish white phage o 7-%2) from
quency instability. They are both used extensively to measyfgqr phaseg(o o 7—1). The corresponding asymptotig (7)

and characterize the sta_lbmty _penformgnce of clocks, oscill apendencies;~! and+~!,/log(ar) for somea, can barely
tors, and systems for disseminating time and frequency [ distinguished in practice

[12]-[14]. Let us give brief definitiong. The raw data for these It would seem from (1) that the extra averaging operation
measures comp;lse a slequkeageof tlmhe residuals, say frc;m that gives MVAR its superior power of discrimination also
a comparison of o clocks or a phase comparison o ultiplies the amount of calculation by a factor of. Pre-

oscillators. We assume here that the samplesare evenly ;iq,s napers [2], [7], which treat the mechanics of MVAR
spaced in time, W|.thsample pe”c,)dTO' _I_et an averaging - .o mpytation, show how to reduce that factor to 4/3, excluding
time 7 = mro be g|V(92n, where«n. IS an mtege;. The Allan o1 initial operation on the data set. The approach given in
variance, denoted by, (), is defined asl/(27°) times the |71 \eformulates the definition of MVAR in terms of third
time average or mathematlcal expectation of the ngaresd‘i:l]‘?erences of the cumulative sum of the time residuals. Here,
second d_|fferences, with step, of the Sequence,. Modified after restating this formulation, we apply it to the study of the
Allan variance, denoted by mof{j(T)’ is defined in the same . qqence of estimators of MVAR in terms of their equivalent
way, except that the sequeneg is replaced by the Sequencedegrees of freedom (edf). Tractable expressions for edf in the

@n(m) of moving averages presence of power-law noise allow extensive numerical trials

. INTRODUCTION

= of estimator parameters, especially the estimation period, the
Tp(m) = — Z Trn—j. (1) amount by which the estimator summands are shifted in time.
mizo The outcome is a practical guideline for estimator design.

gimple approximations to the edf of these estimators are

By virtue of the second difference in their definitions, stabl : . L .
statistical estimates of AVAR and MVAR can be accumulate(t‘jOnStrUCted and tested, with the aim of providing a convenient
gage for computing approximate confidence values for

in the presence of a class of phase noise models, the proceggg

with stationary second increments [12], from which useful fit@os'[ experimental situations. Finally, we show how to obtain

to the behavior of oscillators, amplifiers, etc., can be seIect&%rgsszrvsatg;ri?:fi'ge;(;ir\rl]a:)ufeso'\:‘\l:?;x:sence of phase noise
Special cases angower-lawmodels, associated with spectraYV P P :

densities having the property

S.(f) ~ const. f?
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ZTn(m) from (1). LetA,,, be the backward difference operatorfrom (5). ThenM is the largest integer satisfyirgn + (M —
defined byA,,, f, = f» — fn_m for any sequencg¢,,. Use the 1)m; < N, namely,
second-difference operatay?, to form the MVAR filter output

M:{N—Zim-i-mlJ (6)

zZp(m) = A% T, (m) mi

=Tp(m) — 2Tp—m(Mm) + Tn—2m(m). (2)  where|a| denotes the integer part af The MVAR estimator
_— to be studied is
By definition
) B 1 M—-1 )
modo2(r) = = (z2(m)) ©) V=sou > Bt (). @)
27 k=0
where ( ) denotes either mathematical expectation E or
infinite time average over. Although only the variabler ) ) ) ) )
appears, mod?(r) actually depends on both and . For A continuous-time analog of this setup yields simple and

¥ continuous-Time Analog

zo(m) on the parametem. tions, not only of the underlying noise processes (see below),
The third-difference formulation expresseg(m) in terms but also of MVAR andV/, by changing discrete-time averages
of the sequencey,, defined by to continuous-time averages. The third-difference approach

works here, as well. Lek(¢) represent time deviation as a

. function of time. Write
wy = 0, wn:ZaZj. (4) unct I . IT
=L T(t;7) = = / £t — ) du,
T
In terms ofw,, the time-residual averages are given by 0 +
2(t7) = A2E(t 1), w(t) = [ x(u) du.
_ 1 1 T
xn(m) = _Arnwn = _(wn - wn—rn) nzm 0
m m
Then

which, combined with (2), gives

1
zn(m) = EAf’nwn

1
= n — 3Wp—m 3Wn—2m — Wn—3m 5 1
m(w w + 3wn—2 Wn—3m) (5) 2(t57) = = ABw(t). )
T

F(ti7) = %Arw(t)

and hence

for n > 3m. . . .
Formula (5) has several advantages over (2) for use fffine the continuous-time analog of mog)(r) by

(3). The filter takingw,, to z,(m) has only four taps; the ) 1,
filter taking z,, to z,(m) has3m taps. The computation of mod” o, (7) = ﬁ(z (t;7)) 9)
estimates of moa?2(7) from third differences ofw, is like
the computation of estimates of (7) from second differences
of z,, and the computation of strided estimates is simplifie
Finally, it is easy to construct useful and tractable stochastic 1 T

/ 22(t;7) dt.

0

(identical to Bernier's asymptotic MVAR [3]), and the
8ontinuous—averaging estimatdi© by

C

models of thew,, sequence. The cost of these advantages is Ve= 92T
the computation otv,, from the recursionw,, = w,_1 + x,,.

(10)

Note that ifx(¢) is available for a duratioff’,, then we should
B. MVAR Estimator with Variable Stride letT = T, —3r, the duration of availability of(¢; 7). Later, to
match properties oV © to those ofV, we shall let?” = My,

To estimate MVAR with limited data, the infinite average, ..o 17 is given by (6)

in (3) is replaced by a finite average of th&(m). When
computing analogous estimates of AVAR by averaging the
squares ofA2 r,,, it is customary to increase by either 1
(full overlap) or m (v overlap. The existing literature on  The statistical properties o’ depend on the random
MVAR ([1], for example) usually assumes a step of 1. Herg@rocesses chosen to represent the sampled time resigdyals
we allow the step to vary between these extremes. Let BEsllowing Walter's treatment of discrete sampling [15], we
establish some terminology. We specify estimation period use an explicit discrete-time power-law model instead of a
71 = myTo, Where the positive integem; is called the sampled continuous-time model for our main calculations.
estimation strideand we consider averages over all availabl€his has two advantages. First, we avoid the complications
values ofz3,, ., (m), k > 0. of the interactions among the hardware bandwidth, the sample

Assume thatV time residualsc;, zs, - - -,z are available. period, and the averaging time [3], [13]. Second, the discrete-
Then there areV + 1 summed valuesvy, wy,ws, -, wy. time model works especially well with the third-difference
Let M be the number of samples ©f,,, ., (m) obtainable formulation.

I1l. NOISE MODELS
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TABLE |
GENERALIZED AUTOCOVARIANCE OF w FOR DISCRETETIME AND CONTINUOUS-TIME POWER-LAW PHASE NOISE

Ly=0, L,= Z_l;j—_'l j,ll/g

noise type I} Rd (n) RS (t)

white phase 0 —% |n] -1t

flicker phase -1 hlm (n2 — i) Ly, 51;t2 log |t}

white freq -2 12170 (n? = 1) |n 5 [¢®

flicker freq -3 7241'% (n?-4(n*-9) L, —s-ttlog ||

rand-walk freq —4 — 350w (P* = 1) (n? — 4) |n] — i 1t
nonintegral  —5— cos(’lrﬁl/Z)I‘(Zfﬁ) rg“l(;a%i:;l) T2 cos(wﬁ/12)l‘(2fﬁ) el -

Because the measure of estimator confidence to be examif@ed[6], [11]. A continous-time version of the GACV theory
is invariant to scale factors, we use the most convenient scalimgs been published [5]. Here, we can only give hints of the
for spectral densities to reduce the complexity of constadiscrete-time theory, which is similar.
factors in the generalized autocovariances shown in Table |.Table | gives formulas foRR¢ (n) for the values of3 needed
Factors for converting to the standard scaling used by thethis study. Bear in mind that the noise-type label applies
frequency and time community are given below. to z,, a power-law process with exponefit while R% (n)

The most critical assumption about the models is the aspplies tow,,, a power-law process with exponefit- 2. The
sence of linear frequency drift. We assume that the drift rafermula for nonintegrals in Table | is the same as the one
either is zero or is known from considerations external to tlerived for fractional-difference processes by others [8], [9],
immediate data set. In the latter case, we can assume that[fig. It has been verified that this formula actually does extend
drift has been removed from the data. In particugy,has no to the nonstationary situation. Because passage to the limit of
long-term quadratic component;,, has no long-term cubic the GACV as/3 approaches an integer is unfortunately not
component, and,(m) has zero mean. This assumption wilstraightforward in general, the formulas for integralwere

later be repeated at the point where it is needed. derived from known ACV'’s of stationary fractional-difference
processes by repeated solution of difference equations of form
A. Discrete-Time Power Laws —82R(n;v) = R(n;v + 2), where R(n;v) is the ACV or

GACYV of a fractional-difference process with exponentand

62 is the second-order central difference operator with step 1.
For 3> —5, the process, (m) defined by (5) is stationary,

and the GACYV theory allows its ordinary ACV sequence

Let the two-sided spectral density of thg-sampled se-
quencex,, be given by

sS4 =l s, 1S5 @D
RY(n;m) = Elzg4n(m)zn(m)]
Then S¢(f) ~ |2rfro|® as nfro — 0. These so-called
fractional-difference processegere described by Granger ando be calculated directly fronR< (n) by
Joyeux [8] and by Hosking [9]. Because the first difference of 2 1d 6
the processu,, defined by (4) is just,,, we know thatw, is meRE (nym) = =6, 1, (n)
also a fractional-difference process, with spectral density =—R%(n - 3m) + 6R% (n — 2m)

= d d

S31) =12 sin(r fro) P, 12) ~ 158, —m) + 208, (n)
—15R% (n +m) + 6R% (n + 2m)

This frequency-domain description af,, has an equiva- — R (n + 3m). (13)
lent time-domain description, thgeneralized autocovariance
(GACV) sequencekd (n), wheren runs through all the inte- The central difference operatersS, appears as the operator
gers. Ifw, were stationary, then its ordinary autocovariangeroduct A3 A3 .
(ACV) could be derived as the Fourier transform of (12). For It is appropriate to note here that (3), (13), and Table | lead
the range of3 appropriate to this application-4 to 0),w, is to a formula for MVAR in the presence of fractional-difference
not stationary, but does have stationary third increments. Wighase noise, namely,
some care, one can extend the notion of ACV to the class 1
of processes with stationamrjth increments in such a way modo—z(f) == E 22
that their covariance properties can conveniently be described 27
in terms of a function, the GACV, that still depends one which, when expanded by (13), is equivalent to a formula of
discrete time variable. Although the GACV itself cannot b&Valter [15, eq. (75)] that was derived from a frequency-domain
regarded as a covariance in the usual sense, under certaiegral.
restrictions it can baisedlike one. GACV'’s of continuous- The standard power-law scaling used by the frequency and
time and discrete-time processes have already been usedinte community is based on a one-sided spectral density,
studies of Allan variance and power-law noise simulatiofi)(f) ~ h.f*, of fractional frequencyy = dz/dt, where

(m) = %Rz(mm (14)
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a = 3+ 2. To convertRY (n), R%(n;m), and modo2(7) to  chi-squared distribution, edt can still serve as a convenient

this scaling, multiply them by the factor dimensionless measure of the confidenc&ods an estimator
h of its mean EX]: we can interpret edX as the degrees of
?“(2@—%3—@. (15) freedom of the chi-squared distribution that has the same ratio
of mean to standard deviation. Since the MVAR estimafor
B. Continuous-Time Power Laws is the sum of squares aforrelated zero-mean Gaussians, it

is reasonable to assume thidtis approximatelydistributed

Becguse the continous-time gnalog given above av0|§§ const x2,; -, and, on this basis, to construct approximate
sampling completely, continuous-time random-process mOdgosnfidenceeintervals for mod, () [10], [18]
Y ’ :

are appropriate. Let the two-sided spectral density:(@j be
given by A. Discrete Time

Se(f) = l2n f1°. (16) Let us compute ed¥’. By (7) and (14)

Then, sincelw/dt = z, we know thatw(t) is also a power-law E[V] = iRd(O m) (20)
process, with spectral density Co2r2T YT
Se(f) = 2nf|P2. that is, V' is unbiased for modZ(r). Also from (7) we have
M-1M-1

For 3> —5, the processu(t) has stationary third increments. 1 ) )
Moreover, for3 < 1, S¢,(f) integrates to a finite value over VarV = (2r2M)? o> M im, s A jm)
any frequency range that excludes an interval about zero. =0 j=0

Therefore, a high-frequency cutoff is unnecessary. Its GACV (21)
function RS (¢) [4], [11] is also given in Table I. As with the
discrete-time model, the procesg) given by (8) is stationary,
with ACV function

where cov (X,Y) denotes the covariance of the random
variablesX andY. To compute the covariances in (21), we
assume that, (m) is a stationary Gaussiaero-mearprocess.

RE(t;7) = E[a(u + t;7)2(u; 7)] As indicated earlier, the assumptioq@(m)] = Ols crucial;
in practice, it means that the effect of linear frequency drift
that can be calculated fromRS, (¢) by on a time scale of order is negligible. Since any two jointly

Gaussian zero-mean random variablésand Y satisfy cov

TRI(t7) = =67 R, (1) (X2,Y?) = 2(E [XY])?, (21) becomes

= —RS,(t — 37) + 6RS,(t — 27)

M-1M-1
— 15R;,(t — 7) + 20R:,(¢) varV — 2 [RY((i — fymy;m)]?
w w = - —J)ml,m)] . (22)
— 1BRS (¢ + 1) + 6RS (¢ + 27) (2r2M)? ; ;
— R, (t+37). A7) The diagonat—j =k, for k = 1—-M to M —1, containsM —

|%| identical terms. Summing over these diagonals converts the

A formula for mod ¢2(7), analogous to (14), is _ _ . .
ay(T) g (14) double sum to a single sum, which, combined with (19) and

1 . .
modt 0_3(7) _ ﬁRE(O%T)- (18) (20), gives the main formula
M-1
Substituting RS (¢) from Table | into (17), we find from %V = % 142 Z <1— %)(pﬁ(kml;m))ﬂ (23)
(18) that mod o2(r) is exactly proportional tor—>=7, for € k=1

—5< 3 < 1. The same result was derived by Bernier [3] frongOr edf V, where
a frequency-domain integral.
The factor for convertings, (¢), R(t;7), and mod o2(7)
to standard frequency and time scaling is the same as (15),
with 7o replaced by 1.

Ri(n;m)
ds . _ z s
pz(nv m) - Rg(O, m) ’

Formula (23) is analogous to existing formulas for the edf
of AVAR estimators ([6] and references therein). The main

IV. EQUIVALENT DEGREES OFFREEDOM difference is that the ACV ofz is computed from sixth
By definition, the equivalent degrees of freedom (edf) of differences of the GACV ofw instead of fourth differences
positive random variablel is defined by of the GACV of z.

o(ETXT)2 Formula (23) is mathematically equivalent to an earlier

M (19) formula of Walter [15, (eq. 32)], but requires less computation.
var X Recall from (13) that each value &¢(n;m) needed in (23) is

where varX denotes the variance o. If X is distributed as obtained from seven values & (n). If no values ofR¢ (n)

a constant multiple of a2 random variable, with, degrees are stored in advance, it takgd/ evaluations ofR¢ (n) to

of freedom, then edfX = p». For example, the samplecompute (23). Walter's formula for va¥ is a double sum

variance ofn independent, identically distributed Gaussianequiring 5(2m — 1) (2M — 1) evaluations of R%(n). In

hasn — 1 degrees of freedom. Even X does not have a practice, moreover, one can compute and store the values

edf X =
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Rd(n),|n| < N, in advance. This shows the advantage of N = 1024 time residuals, m = t/1,
the third-difference approach, which derives MVAR estimator 400 _ ... A S ,
summands from four values af,, instead of3m values ofxz,,. —0— white phase

In connection with a recent conference paper [18], tables - wﬁﬁszf:a::nc
of edf V' for m; = 1 were generated by the methoc_i given ] m=2 —v— flicker freqquencyy
here, by Walter's method, and by Monte Carlo simulation. TheE : —o— random-walk freq |
results of the two theoretical methods agreed within 0.1%; thg
simulation results agreed with the theoretical results within & 100 -
few percent. ] i

A note on numerical computatiofihe ACV R¢(n; m) tends
to zero asn — oo, yet is obtained from differences of
R%(n), which tends tooo with n. Clearly, one should use
double precision for evaluating (13). Even so, the compute
values of R¢(n;m) can deteriorate for large, especially for
nonintegral3, where R¢ (n) involvesI functions. | was able
to cure this problem by replacing the upper limit — 1 of the
summation in (23) byK — 1, where K is the smaller ofAM
and 10m/my. (In all actual computationsy/m; is assumed
to be an integer.) 1

T

equivékent degrees of fi

B. Continuous Time estimation stride m,

(13-)he computation of edi’* follows the same pattern. By Fig. 1. Equivalent degrees of freedom of MVAR estimators.

E[Ve] = %RE(U;T) N is the number of time residuals in the data set= 7 /70,
T wherer is the averaging time, and; = 71 /79, the estimation
stride, wherer, is the estimation period. From here on, we
also assume thelivisibility condition which says that the
estimation period divides evenly into the averaging time, that

and, with the assumption that¢; 7), as a function of, is a
stationary Gaussian zero-mean process,

2 T T )
[ — <t — is,
varV Gr2T) /0 /0 [R(t — w;m)]° dt du.
T m
A change of variables converts the double integral to - = p— =r
T
2/ (T — t)(RE(t;7))? dt where r is an integer. Thus, the estimation stricke; is
0 restricted to divisors ofn. This condition allowsV and edf
in which we shall make the further change of variabte 7z. tho, be calculated from the subsampled arrays,, and
From Table | and (17), it can be verified that Ry, (ym), respectively. For eacijV,m,m,) combination,
the numberd/ of estimation summands to be used in (23)
Re(rz;7)  R(z31) is calculated by (6).
Re(0;7) = Re(0;1) A selection of edf values is plotted in Fig. 1 for 1024 time

residuals and the five standard phase-noise types. Observe how
(This is a scaling property of continuous-time power-laedf depends onn; for fixed m. For each noise type and
noise.) Thus, defining m > 4, any m; between 1 andn/4 gives a value of edf
that is nearly maximal for thak:. As the two-point curves for
. Ré(z;1) m = 2 show, we should taken; = 1 in this case; the same
pi(x) = R(0: 1) i _ ; -
<(0;1) is true form = 3. Here is an empirical result.
Assume an averaging time at most1/4th the duration of
we obtain the time-deviation record. For each power law between white
1 9 P - phase and random-walk frequency, any estimation period
= _/ <1 — _> (pg(a;))Q dz (24) betweenr, and max(o,7/4) that divides evenly inte gives
edive  pJo p an MVAR estimatorV whose edf is withi% of the maximal
value for 7.
Fig. 1 shows that the variation of elff with m; is greatest
for white phase. Also, it turns out that the quantity

wherep = T'/7.

V. EFFECT OF ESTIMATION PERIOD

Formula (23) was used to generate tables of ¥dfor _M_Mm _Mn (25)
combinations ofV,m,m1, and noise exponert. Recall that P=7 m T
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is a rough estimate of edi, especially form; in the
recommended range < m; < max(1,m/4).

TABLE I
COEFFICIENTS FORAPPROXIMATING THE EDF oF MVAR ESTIMATORS

The choice of estimation period; might depend on a
tradeoff between convenience and computational effort. For

701

simplicity, one can always choose = 7. If the data set is

large, one can choose the largest acceptable vajue, /4,
to minimize the numbe/ of terms needed to calculaté

from (7).

VI. LOWER BOUNDS FORMVAR EDF

The aim of this section is to uncover simple approximation
formulas for edfl/ that can be used in practice in place of the

m
1 2 > 2

noise type I} ap ay ag a ag ay
white phase 0 514 0 935 0 1.225 .589
-1/2 543 954 1.074 596
flicker phase -1 576 973 1.003 .602
-3/2 617 .992 977 598
white freq -2 667 1.010 968 .571
-5/2 .729 1.024 961 510
flicker freq -3 811 1.027 947 416
-7/2 914 1.000 906 .343
rand-walk freq —4 1.000 .866 768 411

exact summation (23). There are two rigorous lower-bound
formulas that can serve this purpose.

A. Discrete Time

The constantsag and a;, which depend only on3, are

Up to now, we have concentrated on a time-domain focomputed by numerical integration. To use this expression as
mulation of edf V. The following result is proved by aan approximation to edV, we again letp = M /r.
frequency-domain argument, which is not given here.

Theorem 1:Assume that the time residuatg, with sample C. An EDF Approximation Strategy

period 7o, are a process with stationary Gaussian zero-meanryq right sides of (26) and (27) can be regarded as candidate

second increments. Let, have the fractional-difference spec
trum (11), where-9/2 < 3 < 0. Letm = m;r, wherem; and
7 are positive integers. Using (4), (5), (7), and any positivg,
integer M, form the MVAR estimatort’ with averaging time
T = m1p and estimation period; = mi79. Then

2
cary » M 20 -
where
m/2 -6
I / sin () iz,
o [m sin(rz/m)]2—~
/2 .12
g / sin (mz) di.
o [r sin(rz/r)]4—28

In other words, we have a bound of form édf> ap, where
p = M/r as given above in (25). Tables efversuss, m, and
r can be generated by numerical integration.

B. Continuous Time

It is much easier to derive a useful lower bound for &df
Let p > 2. From (24) we have

1
edf Ve

2/7’ .
- P
p_o(

<

1

2
p

This gives a bound of form

edfve >

aop

ai

122

p

(#))? dz

) pz2

(27)

‘approximations for edf’. To assess their quality and to

choose between them, tables were generated for a selection of
,m,my, and 3. The following empirical strategy and error
statement emerged.

Assume fractional-difference phase noise with power-law
exponent betweer-4 (random-walk frequency) and 0 (white
phase), at least 16 time-residual points, an averagingtiate
most 1/5th the duration of the measurement, and an estimation
period ; betweenr, and max(ry,7/4) that divides evenly
into 7. In our notation,—4 < 8 < 0,N > 16,< N/5, and
m = rmy, Wherer is an integer, and < m; < max(1,m/4).

For m = 1 or 2, the discrete-time lower bound (26) is
used as an approximation for e#if. In all other cases, the
continuous-time lower bound (27) is used. The relative error
of this strategy is observed to be at mest1.1%.

To implement this approximation in practice, use the for-
mula

aopp

@
b

wherep = Mm;/m, M is obtained from (6), and the co-
efficients ag, a;, as functions ofm and /3, are drawn from
Table II.

Table IIl shows the percentage errors of this approximation
(100(approx/exact-1)) for a selection ofV,m,my, and 3.
The full range of observed errors is represented. To balance
the errors, it was found expedient to reduce the continuous-
time edf approximation, for white phase only, by 5%. Tables ||
and Il include this adjustment.

edfV ~ (28)

VII. CoMPOUND NOISE SPECTRA

The previous results and methods assume a power-law phase
noise spectrum proportional to (11), for some fixed exponent
5. If that were indeed the case, our statistical efforts ought to
be directed toward estimating the two-parameter set consisting
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TABLE 111
PERCENTAGE ERRORS OFMVAR ESTIMATOR EDF APPROXIMATION

sharper dependence g% especially for larger/ry. Thus,
minimizing over a set of in the computation of estimator edf
causes a smaller loss of accuracy for MVAR than for AVAR.

B
N _m m 0 -1 2 3 - VIIl. CONCLUSIONS
1024 1 1 +00 +00 +00 +00 +00 - -
2 1 -01 -01 —-01 -01 —01 Although the overall problem of estimating modified Allan
12 } +1i-; -(2]?; *g-g *g-é *g-g variance MVAR may appear to be more difficult than the same
9 96  —06 -—02 -03 -02 problem for conventional Allan variance AVAR, theoretical
4 441 401 -02 -03 -02 and numerical results calculated here from the third-difference
128 1 -59 04 -04 26 400 approach show that in some ways the situation is actu-
i *g-g *g-i *g-i “g-g +g-g ally reversed. A tractable expression for the edf of MVAR
8 _53 04 -04 —26 10'0 estimators in the presence of power-law phase noise was
16 -36 -03 -03 -25 400 derived, and simple approximations constructed. Numerical
32 434 404 01 -23 402 computations of edf yielded a rationale for choosing the
16 ; i Egg *18(1) *3-‘21 “é‘l* +g-8 estimation period or stride: it was found empirically that the
3 1 499 -20 -30 -72 _35 use of an estimation period up to one-fourth the averaging time

does not appreciably degrade the confidence of the estimator
below that of the fully overlapped estimator. Often, in fact,
there is no degradation. The computations also revealed that

. ) the extra filtering inherent in MVAR causes the edf of an
of 4 and the constant of proportionality. Instead, as usual, Wetimator to be less sensitive to the power-law exponent than

find ourselves using parametric tools to evaluate the confideRgg egf of a typical AVAR estimator. Consequently, MVAR

of a nonparametric statistic. The value of ddfdepends on grror hars can be more robust against spectrum uncertainties
A. What can we do in the presence of a polynomial phages, AVAR error bars.

noise model

The most important limitation on these results, especially
for long tests of oscillators, is that linear frequency drift must
be negligible. If a drift rate is known from considerations
external to the immediate data set, then one can remove it
- . from the phase data, and we are back to the case of zero
a finite sum of power-law spectra? Some help is given t()]\r/ L L .

. . rift. For AVAR, it is known that estimation of drift from the
the following theorem, which, although weak and perha%s .
: : .~ .'data themselves, and removal therefrom, cause negative AVAR
obvious, is better than no knowledge at all about the situation.,. : S
] : L . estimator biases that worsen as averaging tirimereases. The
Theorem 2:Let the phase noise be a finite sum of indepen- : ; : :
. . . . use of three-point [16], [17] or four-point [4] drift estimators,
dent component noises with stationary Gaussian zero-mean : . X
. ; which extract a quadratic component of the time-residual
second increments. Form an MVABstimator V' from the

iven phase noise. and corresponding estimater§om the sequence,,, simplifies calculations of the mean and variance
9 P ' P 9 ® of estimators of AVAR with drift removed. | have no doubt
components. Then

that similar calculations for MVAR estimators can be made
on the basis of four-point drift estimators that extraatudoic
component of the sequenaeg, of cumulative sums of,,.

Se(f) = gslsin(2m fr0)|” (29)
3

edfV > m’jn edf V4.

In other words, we never do worse than the worst component.
To apply this theorem to the situation (29), assume that thﬁ] oW Al . d (tme-d | eh
: : . W. Allan, “Time and frequency (time-domain) characterization,
component’ values are all in some subinterval Gf"!’ 0] (the estimation, and prediction of precision clocks and oscillatol&EE
whole range, perhaps). Use (28) and Table Il to compute edf Trans. Ultrason., Ferroelect., Freq. Control. UFFC-34, pp. 647654,
Vs for each tabulated in the subinterval, and take the smallest 1987 - ey ol ¢ st d fut
. . . , “Time and frequency metrology: current status and future
Va'?’e as azonservat“_/es“mate of ed¥V". For example, |f_0ne considerations,” irProc. 5th Europ. Frequency Time Forurh991, pp.
believes that the noise has components between white phase 1-9.
and flicker phase, perhaps from prior knowledge, perhaps 43 L. G. Bernier, “Theoretical analysis of the modified Allan variance,” in
. . Proc. 41st Annu. Frequency Control Symp987, pp. 116-121.
evidenced by a log-log plot of moa versust with slopes 4

=1 oM C. A. Greenhall, “The fundamental structure function of oscillator noise
between—3/2 and—1, then one can minimize (28) over the
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